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Abstract

Periodically layered isolators exhibit transmissibility ‘‘stop bands’’ or frequency ranges in which there is
very low transmissibility. A two-dimensional axisymmetric model was developed to accurately predict the
location of these stop bands for isolators in compression. A Ritz approximation method was used to model
the axisymmetric elastic behavior of layered cylindrical isolators. A modal analysis was performed for a
single elastomer and metal layer combination or cell. A modal synthesis approach was then used to obtain a
model of an n-celled isolator, from which overall isolator modal properties are determined. This model of
the dynamic behavior of layered isolators was validated with experiments. Analytical and experimental
transmissibilities are compared for test specimens having identical elastomer components, but different
geometries and different numbers of cells. In all cases, experimental and analytical transmissibilities are in
close agreement at frequencies ranging from zero to those associated with the initial roll-off of the stop
bands. For three and four cell cases, minimum stop band analytical transmissibilities lie below the
minimum experimental measurements, although an experimental noise floor imposed a minimum
transmissibility measurement of approximately 1.4� 10�4. Experiment suggests a practical isolator design
could limit the minimum number of cells to three or four to ensure a pronounced stop band attenuation
effect. In addition, analytical and experimental transmissibilities are compared for geometrically similar test
specimens with differing elastomeric damping properties. The analytical and experimental results show that
stop band effectiveness is not appreciably affected by the addition of modest damping.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Dynamically tuned flexible mounts are frequently used for passive isolation of mechanical
components subject to vibration. Elastomeric materials are incorporated into many mounts to
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provide a combination of low stiffness and moderate damping. Typical isolation mounts are
designed to attenuate motion or force at low frequencies, usually below 100Hz. The principles of
vibration isolation in this frequency range are well understood. Elastomeric mounts employed for
low-frequency isolation may be simultaneously subjected to higher-frequency, machine-generated
vibro-acoustic energy. Standard isolation techniques, however, may not be appropriate for
forcing frequencies much higher than the fundamental system frequency, due to the presence of
wave effects. Wave effects occur at high frequencies when the elasticity and the distributed mass of
the mount interact to create sharp transmissibility peaks [1].

Refs. [2,3] report that periodically layered metallic and elastomeric mounts are potential
attenuators of dynamic stresses at high frequencies. The impedance difference between layers is
the attenuation mechanism, in which an incident wave is scattered and essentially split into a
reflected and refracted wave [4]. The device becomes increasingly effective with a larger impedance
mismatch between the isolator materials.

A one-dimensional analysis of periodically layered isolators in compression is presented in Ref.
[4]. Motivation for the research effort was isolation of reactor components and structures from
seismic, impact, or other accident-induced loads. A time-domain solution was obtained for plane
stress wave excitation through layered composites. The analysis makes use of continuity of stress
and displacement at the layer interfaces. Plane longitudinal stress waves with particular
wavelengths are attenuated in periodically layered elastic mounts, whereas no attenuation is
exhibited by an undamped homogeneous elastic medium.

A one-dimensional analysis of layered isolators, based on the theory of shear waves in infinite,
periodically layered media is presented in Refs. [2,3]. Floquet theory is used to solve the equations
for the propagation of plane waves through a laminated system of parallel plates. The plates
consist of two alternating materials, and the direction of propagation is normal to the plates. The
theory predicts high-frequency ‘‘stop bands’’ within which vibratory energy is attenuated. The
analysis includes a method for predicting the beginning and end frequencies of stop bands. Thus,
the layered isolator behaves as a mechanical notch filter. The existence of the predicted stop bands
was corroborated by testing of layered specimens in shear. The test specimens were of finite
length, and therefore edge effects and reflections from the top and bottom layers were observed in
the experiment. These effects, however, did not obscure the basic physical phenomenon of stop
bands.

The effects of three-dimensional elasticity on periodically layered isolators in compression were
examined in Ref. [5]. A detailed finite element analysis of periodically layered isolators was
conducted to gain an improved understanding of three-dimensional effects on isolator
performance. The isolator models consisted of alternating, cylindrical layers of elastomer and
metal. Two-dimensional axisymmetric solid elements were used to model each layer of cylindrical
isolators. Each element had eight nodes and 48 degrees of freedom. The first four mode shapes of
a typical three-celled isolator are shown in Fig. 1.

The mode shapes of the isolator were then examined [5,6]. For an isolator with n cells, there are
ðn � 1Þ isolator modes below the beginning of the stop band. The stop band frequency range
begins at the nth isolator mode and continues until the ðn þ 1Þth isolator mode. In the first n

modes, each elastomer layer associated with these frequencies undergoes approximately uniform
axial strain. In fact, the metal layers behave essentially like n discrete masses supported by n axial
springs in series. Invariably, in the first mode, every elastomer layer exhibits either uniform
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tension or compression. In the next ðn � 1Þ modes, the mode shapes of the individual layers are
observed to contain different combinations of layerwise compression and tension. The ðn þ 1Þth
mode (e.g., mode 4 in Fig. 1) is the first mode in which an elastomer layer exhibits a ‘thickness’
mode. Physically, this mode involves both tension and compression within the elastomer layer and
minimal net axial motion of the constraining metal layers. This mode is associated with the end of
the stop band frequency range.

The first three modes in Fig. 1 also exhibit significant lateral motion of the middle of each
elastomer layer. This is due to fact that the upper and lower surfaces of each layer are constrained
and that elastomeric materials are nearly incompressible. Consequently, the effective three-
dimensional stiffness of each layer differs from that predicted by one-dimensional theory, which
only addresses axial motion.

The utility of a 1-D ‘‘shape factor’’ for axisymmetric frequency predictions was investigated in
Ref. [5]. The shape factor is a well-documented 1-D correction factor to account for the difference
between the effective three-dimensional longitudinal stiffness and the stiffness predicted by one-
dimensional theory. It is defined as the ratio of one bonded area to the force-free area of an
elastomeric isolator. Essentially, the shape factor accounts for the discrepancy between the
predicted quasi-static one-dimensional stiffness and the actual measured stiffness of an elastomer
isolator. Ref. [5] found that the shape factor was not useful in predicting higher-frequency
axisymmetric isolator modes. Errors of up to 100% were common for 1-D predictions of stop
band frequencies.

A preliminary method was developed to predict stop band beginning and end frequencies in
three dimensions [5]. A table look-up approach, which correlated 1-D frequencies to axisymmetric
frequencies, was used. To accurately capture axisymmetric behavior, however, this approach
required numerous axisymmetric FEM solutions for the entire design space of possible isolator
geometries.

A design optimization methodology was also developed for layered isolators subject to quasi-
static stiffness constraints [5,6]. A simulated annealing algorithm was employed to determine
optimal material properties and layer thicknesses.

Experimental tests were also performed for various layered test specimens to verify the existence
of stop bands in compression mounts [5,6]. Specimens were attached to a rigid base, which in turn
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Fig. 1. First four axisymmetric mode shapes of a cylindrical three-celled isolator in compression. (a) mode 1, (b) mode

2, (c) mode 3, (d) mode 4.
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was attached to a mechanical shaker. An accelerometer was placed on top of the specimen, and
another was placed on the base. The shaker inputs were a series of chirp signals over discrete
frequency ranges. The accelerometer signals were then fed to a Fourier analyzer to determine
transmissibility, and the stop band phenomenon was directly observed.

The overall goal of this research was to develop and experimentally validate a design
methodology for periodically layered compression isolators. The primary objectives pursued to
reach this goal were as follows:

(1) To develop a method for accurately predicting stop band beginning and end frequencies using
an analytical, axisymmetric approach. The method should accurately capture the axisym-
metric elastic behavior of vibrating cylinders and accommodate varying geometry, elastomer
shape factor, and numbers of cells. In addition, the method should be able to calculate
frequency-dependent transmissibility.

(2) To validate the analysis method by experiment. Experimental and analytical transmissibilities
of layered test specimens having the identical elastomer, but different shape factors and
different numbers of cells should be compared. The experimental and analytical
transmissibilities of geometrically similar test specimens with differing elastomeric damping
should also be compared.

2. Axisymmetric approximation method

In Ref. [5], a table look-up method was employed that required the construction of a database
containing 1-D to 2-D axisymmetric frequency ratios. In the current work, a more general method
is pursued for predicting the axisymmetric behavior of layered isolators. The method combines a
Ritz approximation method with a component mode synthesis technique. For given isolator
geometry, material properties, and number of cells, the axisymmetric stop band frequencies and
the frequency-dependent transmissibility are calculated.

2.1. Natural frequencies of axisymmetric cylinders of finite length

A closed-form solution for natural modes of a vibrating cylinder is very difficult to obtain.
Thus, several approximation methods have been pursued. In Ref. [7], Heyliger presents a
technique for calculating the natural frequencies of the axisymmetric vibrations of isotropic and
anisotropic cylinders of finite length. This method is general and can be applied to cylinders
having a variety of boundary conditions and material properties.

The displacement components that describe the axisymmetric motion of an elastic cylinder can
be expressed as

u ¼ Urðr; zÞ; w ¼ Uzðr; zÞ; ð1Þ

where u and w are independent displacements in the radial and axial directions, respectively. The
strain components for axisymmetric motion can be written in cylindrical co-ordinates as

e1 ¼ err ¼
@u

@r
; e2 ¼ eyy ¼

u

r
; e3 ¼ ezz ¼

@w

@z
; e5 ¼ erz ¼

@w

@r
þ

@u

@z
ð2Þ
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The reader is referred to Ref. [7] for a detailed derivation of the equations of motion and
possible boundary conditions. Analytical solutions to the equations of motion are difficult to
obtain, and thus approximate solutions for the governing equations of motion are constructed by
using the Ritz method, in which u and w are approximated by finite linear combinations of the
form

uðr; zÞ ¼
XN

k¼1

bkf
u
kðr; zÞ; wðr; zÞ ¼

XM

k¼1

dkf
w
k ðr; zÞ: ð3Þ

Here fu
k and fw

k are known functions of position, n represents the number of terms for the
displacement components, and bk and dk are constants.

Selection of the approximating functions, f; is somewhat arbitrary [7]. Several requirements
must be met, however, to guarantee that the approximations will converge to the mathematical
solution. The functions fu

k and fw
k must meet the requirement of continuity as required by the

variational statement, they must satisfy the homogeneous form of the essential, geometric
boundary conditions, and they must be linearly independent and complete [7]. Because the
variational problem is posed in energy form, the natural boundary conditions need not be
explicitly satisfied.

In the current work, a single elastomer/metal cell is first modelled in a fixed-free condition.
Multiple cell analyses will subsequently be combined in a complete isolator analysis. For
numerical calculations, it is convenient to non-dimensionalize the cylinder geometry by mapping
the original cylinder to a cylinder with a radius and half-height of 1 using the transformations
R ¼ r=Lr; and Z ¼ z=Lz. Here, Lr is the cylinder radius and Lz is the cylinder half-height (see
Fig. 2). At the bottom of the elastomer layer, the non-dimensional height is z ¼ �1: The
displacement at z ¼ �1 of the elastomer layer is fixed at u ¼ 0 and w ¼ 0; as in Fig. 2. The metal
layer, attached to the top of the elastomer layer at the non-dimensional height of z ¼ þ1; is
modelled as a plane mass and is rigid and infinitely thin. Therefore, at z ¼ 1; u ¼ 0 and w is free,
and the rigid plate translates vertically while remaining horizontal. This boundary condition
effectively restricts any rocking motion of the top plate. The metal layer is modelled as a plane
mass because all the strain energy is assumed to be in the elastomer layer.
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Fig. 2. Illustration of fixed-free boundary condition for a single cell.
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Several different sets of functions could be selected to obtain an approximate solution. In this
work, they must satisfy the boundary conditions u ¼ 0; w ¼ 0 at z ¼ �1; and imposed conditions
u ¼ 0; w unconstrained and uniform at z ¼ 1: A series of approximating functions were developed
that consist of power series in the r and z directions and satisfy the preceding conditions. The
functions for the u direction can be summarized as

fu
kðr; zÞ ¼

Xn

i¼1

Xm

j¼0

riðz þ 1Þðz � 1Þzj; k ¼ 1::½n � ðm þ 1Þ�; ð4Þ

where n and m are chosen to vary the maximum power of variables, ‘r’ and ‘z’. All approximating
functions in the u direction must include an ‘r’ term because they describe an axisymmetric
displacement. In the w direction the functions are formed slightly differently,

fw
1 ¼ ðz þ 1Þ; fw

k ðr; zÞ ¼
Xs

i¼0

Xt

j¼0

riðz þ 1Þðz � 1Þzj
� �

þ ðz þ 1Þ; k ¼ 2::½ðs þ 1Þ � ðt þ 1Þ�; ð5Þ

where again, s and t are chosen to vary the maximum power of variables ‘r’ and ‘z’ . All terms for
the w direction need not include an ‘r’ term. However, any term multiplied by ‘r’ is forced to zero
at z ¼ þ1 to satisfy the imposed boundary condition of uniform axial displacement of the top
plate. Alternatively, the displacement in the w direction can only have a radial dependence from
21ozoþ 1: Substitution of approximation functions in Eq. (3) into the weak form of the
governing equations yields an eigenvalue problem of the form

ð½K � � ro2½M�Þfpg ¼ f0g: ð6Þ

The vector fpg contains the coefficients b and d from Eq. (3) which correspond to different
cylinder mode shapes. The explicit forms of matrices ½M� and ½K � in terms of fu and fw are
reported by Heyliger in Ref. [7].

2.2. Numerical results for a single cell

Numerical simulations were performed for a single cell to compare the natural frequency
predictions using the Ritz method to axisymmetric finite element results. The first and second
modes were examined, because these modes are the component mode shapes important to the nth
and ðn þ 1Þth isolator modes, respectively. An n-celled isolator is illustrated in Fig. 1. The
boundary conditions were fixed-free, as illustrated in Fig. 2. The general material properties used
were: Gmetal ¼ 100 Pa, nmetal ¼ 0:3; rmetal ¼ 10 kg/m2, Gelas ¼ 1Pa, nelas ¼ 0:5; relas ¼ 1 kg/m3,
telas ¼ 1m, and dcell ¼ 1m. Note that the units for rmetal are mass per unit area, as appropriate for
a vanishingly thin metal layer.

The axisymmetric finite element model consisted of parabolic quadrilateral axisymmetric
elements, with 20 elements across the radius, and 20 elements through the thickness of the
elastomer layer. The strain in the metal layer is insignificant, and thus only 5 elements are used
across its thickness. This number of elements was found to be sufficient for convergence over the
frequency range of interest. The frequencies calculated using the finite element analysis were
fn1 ¼ 0:094Hz and fn2 ¼ 0:917Hz. These values are used in subsequent comparisons to the Ritz
predictions as baseline cases.
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The first and second natural frequencies calculated with the Ritz method are presented in Table 1.
A percent error is also calculated with reference to the axisymmetric finite element predictions.
Combinations of the powers of the ‘r’ and ‘z’ polynomials are used in the approximating functions
for both Ur and Uz: To simplify the tabular results, the power of ‘r’ in both the Ur and Uz

approximating functions is the same for a given result. Similarly, the power of ‘z’ is the same in
both the radial and vertical approximating functions. As can be observed from Eq. (4), the lowest
possible power of ‘z’ in the radial direction is 2. This is therefore the lowest power used for both
directions.

As seen in Table 1, as the powers of ‘r’ and ‘z’ increase, the Ritz predictions appear to converge
to the axisymmetric finite element results. Table 2 lists the rates of convergence for both methods.
The first and second natural frequencies of a single cell are computed for different number degrees
of freedom in the elastomer layer. The Ritz method is observed to be significantly more accurate
per degree of freedom.

For computational efficiency, the size of the eigenvalue problem should not be excessively large.
Therefore, a frequency prediction with an error of 5% or less is deemed acceptably accurate for
the current analysis. The lowest power case where this occurs for both modes 1 and 2, is a power
of 2 for ‘r’, and a power of 4 for ‘z’.

To further reduce the size of ½M� and ½K� in Eq. (6), higher-order approximating functions can
be removed from both Ur and Uz: The powers of ‘r’ and ‘z’ in Table 3 were found to be sufficient
to maintain at most a 5% error for the first and second natural frequencies.
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Table 1

Single cell natural frequencies using Ritz method compared to converged axisymmetric FEM results

rq-q zp-p 2 3 4 5

(Hz) % Error (Hz) % Error (Hz) % Error (Hz) % Error

1 fn1 0.4594 388 0.0983 4.5 0.0982 4.4 0.0959 2.0

fn2 11.254 1128 5.6200 513 0.9745 6.3 0.9744 6.3

2 fn1 0.4594 388 0.0982 4.5 0.0981 4.4 0.0951 1.2

fn2 11.254 1128 5.4220 491 0.9379 2.3 0.9377 2.3

3 fn1 0.4594 388 0.0982 4.5 0.0981 4.3 0.0950 1.1

fn2 11.247 1127 5.4211 491 0.9338 1.9 0.9335 1.8

Table 2

Rate of Convergence Comparison for a Single Cell

Ritz method Axisymmetric FEM

Total d.o.f. fn1 (Hz) fn2 (Hz) Total d.o.f. fn1 (Hz) fn2 (Hz)

3 0.4594 11.254 10 0.4576 6.761

10 0.0983 5.6200 32 0.1041 4.068

21 0.0981 0.9379 66 0.1002 1.005

36 0.0950 0.9335 170 0.0967 0.9536

55 0.0943 0.9179 640 0.0948 0.9269

78 0.0942 0.9177 2480 0.0940 0.9168
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The approximate value of the first natural frequency was in error by 4.5%. Likewise, the
prediction of the second frequency was in error by 2.33%. In Fig. 3, the lower order mode shapes
appear to be reasonably good approximations of the higher order mode shapes.

2.3. Analysis of layered isolators using component mode method

A method is developed in Ref. [8] for analyzing complex structures that can be divided into
interconnected components. For this work, a single component is considered to be a combination
of an elastomer and metal layer, or a cell in a periodically layered isolator. All strain is considered
to be in the elastomer portion of the cell. Displacements of each cell are expressed in terms of
generalized co-ordinates, fpg; and are defined by assumed displacement modes, as in Ref. [7]. In
this work, the assumed modes take the form of Eqs. (4) and (5) and include a rigid-body mode in
the z direction equal to unity. This mode allows for rigid-body motion of cells when
interconnected.

When continuity conditions are imposed at cell boundaries, a set of constraint equations results
which expresses kinematic relationships among the co-ordinates associated with different cells [8].
These constraint equations are used to determine a set of overall system (isolator) generalized co-
ordinates equal to the total number of cell co-ordinates minus the number of constraint equations.
The relationship between the sets of cell generalized co-ordinates and the set of isolator
generalized co-ordinates is expressed in the transformation matrix, ½b�: Isolator mass, stiffness,
and damping matrices are obtained through this transformation. Forces on component cells are
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Table 3

Reduced powers of ‘r’ and ‘z’ for Ur and Uz to approximate beginning and end stop band frequencies to within 5%

error

Power

Ur r ¼ 2; z ¼ 3 n ¼ 2; m ¼ 1 in Eq. (4)

Uz r ¼ 1; z ¼ 4 s ¼ 1; t ¼ 2 in Eq. (5)

Mode 1 Mode 2 Mode 1 Mode 2 (a) (b) 

Fig. 3. Approximations for modes 1 and 2 of a single cell for, (a) higher order, Ur: power of ‘r’=3, ‘z’=5, Uz: power of

‘r’=3, ‘z’=5, and (b) lower order, Ur: power of ‘r’=2, ‘z’=3, Uz: power of ‘r’=1, ‘z’=4.
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also transformed into total system forces in this way. A set of equations of motion for the entire
isolator results.

The procedure used to obtain isolator equations of motion, as presented by Hurty [8], is
summarized here. The equation of motion for the sth cell of the isolator can be expressed as

½m�sf .pgs þ ½c�sf ’pgs þ ½k�sfpgs ¼ fPðtÞgs; ð7Þ

where fpgs; f ’pgs; f .pgs are the column vectors of cell generalized displacements, velocities, and
accelerations; ½m�s; ½c�s; ½k�s are the square matrices of cell generalized masses, damping, and
stiffnesses; and fPðtÞgs is the column vector of generalized forces applied to the sth cell. These
include forces transmitted through constraints as well as externally applied forces [8].

Using Eq. (7), equations are written for all isolator cells. The sets of cell equations of motion are
grouped together in matrix form to create a total isolator set of equations:

½m�f .pg þ ½c�f ’pg þ ½k�fpg ¼ fPðtÞg: ð8Þ

When forming ½m�; ½c�; and ½k�; it is desirable to group cell generalized co-ordinates together,
as in

fpg ¼

fpg1
fpg2
�

�

fpgr

fpgs

�

�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; fPðtÞg ¼

fPðtÞg1
fPðtÞg2

�

�

fPðtÞgr

fPðtÞgs

�

�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð9Þ

Grouped in this way, the mass matrix takes the form

½m� ¼

½m�1 � � � � � � 0

� ½m�2 �

� �

� � �

� ½m�r �

� ½m�s �

� � �

0 � � � � � � �

2
666666666666664

3
777777777777775

: ð10Þ

The damping and stiffness matrices take a similar form [8]. Eq. (8) can be considered a group of
unconnected sets of cell equations of motion. When displacement constraints are imposed at cell
boundaries, a set of constraint equations results among the elements of fpg: If there are m

elements in vector fpg; and k constraint equations relating them, then there will be n ¼ m � k
independent co-ordinates in the isolator equations of motion. This independent set of isolator co-
ordinates is designated fqg; and is directly related to fpg through a linear transformation. The
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transformation can be derived such that

fpg ¼ ½b�fqg: ð11Þ

The transformation matrix, ½b�; has dimensions m � n where m > n: The construction of matrix ½b�
can be completed with knowledge of the displacement constraints among the isolator cells.
Suppose that a displacement constraint exists between cell r and s, such that

%u
rðr; z ¼ �1Þ ¼ %u

sðr; z ¼ 1Þ ð12Þ

If all displacement constraints between cells are written in terms of vector fpg; then the entire set
of constraints can be written in matrix form as

½A�fpg ¼ f0g; ð13Þ

where ½A� is a rectangular matrix with dimensions k � m: Because m > k; ½A� may be partitioned as

½A� ¼ ½A1jA2�; ð14Þ

where ½A1� is a square matrix with dimensions k � k; Eq. (13) can then be rewritten as

½A1�fpgd þ ½A2�fpgf ¼ f0g: ð15Þ

Here, fpgd and fpgf are subsets of fpg and are the dependent and independent variables,
respectively. The subsets must be chosen such that matrix [A1] is non-singular, or invertible [8].
The dependent variables can then be explicitly expressed in terms of the independent variables as

fpgd ¼ �½A1��1½A2�fpgf : ð16Þ

From this, the relationship between the entire set isolator variables, fpg and the independent set,
fpgf can be derived as

fpg ¼
pf

pd

� �
¼

½I �

�½A1��1½A2�

� �
fpgf : ð17Þ

Eq. (17) can be rewritten, and thus the transformation can be stated as

fpg ¼ ½b�fpgf : ð18Þ

Substituting Eq. (18) into Eq. (8) and premultiplying all terms by ½b�T; the isolator equations of
motion can be stated:

½b�T½m�½b�f .pgf þ ½b�T½c�½b�f ’pgf þ ½b�T½k�½b�fpgf ¼ ½b�TfPðtÞg: ð19Þ

To perform this substitution, the vector fpg has been arranged so that all dependent variables are
below the independent variables. Therefore, the rows and columns of original matrices ½m�; ½c�; ½k�
and rows of vector fPðtÞg must be rearranged accordingly. The following identities can be defined
[8]:

½M� ¼ ½b�T½m�½b�; ð20Þ

½C� ¼ ½b�T½c�½b�; ð21Þ

½K� ¼ ½b�T½k�½b�; ð22Þ

fQðtÞg ¼ ½b�TfPðtÞg: ð23Þ
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An eigenvalue analysis can then be performed using the system matrices ½M� and ½K� to obtain
the nth and ðn þ 1Þth natural frequencies. These correspond to the beginning and end stop band
frequencies.

3. Experiment

Experimental tests were performed for various layered test specimens to verify the analytical
prediction method. The experiments were performed by attaching a given specimen to a rigid
base, which in turn was attached to a mechanical shaker. The shaker input was a series of chirp
signals each spanning 400Hz. To measure the transmissibility of a test specimen, one
accelerometer was placed on top of the specimen, and another was placed on the rigid base.
The signals were then fed into a Fourier analyzer. In this way, the specimen transmissibilities were
directly measured. The experimental set-up is pictured in Fig. 4.

The first specimen initially consisted of 4 cells. The elastomer was a lightly damped material
and the metal layer was steel. The elastomer material properties were Ge ¼ 0:6MPa, and
re ¼ 1000 kg/m3. The elastomer was assumed to be incompressible, which corresponds to a
Poisson ratio of n ¼ 0:5: To avoid mathematical singularities, the Poisson ratio was approximated
at n ¼ 0:499: The specimen geometry was te ¼ 1 cm, tm ¼ 1 cm, and d ¼ 4 cm. This geometry
corresponds to an elastomer shape factor of 1. The important specimen properties are
summarized in Table 4.

In Fig. 5, the experimental and analytical transmissibilities are plotted for specimen 1 with four
layers. The elastomer had not been characterized at high frequencies, and thus an initial estimate
of the shear modulus for analytical predictions was obtained from initial low-frequency
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characterization. The shear modulus was then adjusted so that the analytical plot matched the
experimental results near the beginning of the stop band. Similarly, the loss factor was estimated
at 0.05 by matching resonant peak height. To validate the analytical method, the resulting
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Table 4

Summary of specimen properties

Specimen 1 Specimen 2 Specimen 3

d (cm) 4.0 2.54 4.0

telas (cm) 1.0 1.0 1.0

tsteel (cm) 1.0 0.64 1.0

Gelas (MPa) 0.6 0.6 3.06

Loss Factor (Z) 0.05 0.05 0.15
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Fig. 5. Experimental and analytical transmissibilities for specimen 1 for (a) 4 cells, (b) 3 cells, (c) 2 cells, and (d) 1 cell:

—, experimental, - - -, analytical.
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material property values were to be used to predict transmissibilities of an additional specimen
composed of the same elastomer, but having a different geometry. Although the model
accommodates frequency-dependent material properties, using constant values for the test
frequency range was adequate to validate the analytical method.

In Fig. 5(a)–(d), experimental and analytical results are shown for specimen 1 with 4, 3, 2, and 1
cells. For all cases, the first n resonant peaks are nearly coincident. The stop band locations are
also accurately predicted. For the 4, 3, and 2 cell cases, a discrepancy exists between experiment
and the analytical predictions for stop band depth. This discrepancy may be because of the
existence of an experimental noise floor, below which transmissibilities cannot be accurately
measured.

The second specimen tested consisted of 4 cells, as well. The elastomer used was the same as in
specimen 1. The metal layer was again steel. The specimen geometry was changed to te ¼ 1 cm,
tm ¼ 0:64 cm, and d ¼ 2:54 cm. This geometry corresponds to an elastomer shape factor of 0.64.
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Fig. 6. Experimental and analytical transmissibilities for specimen 2 for (a) 4 cells, (b) 3 cells, (c) 2 cells and (d) 1 cell: —,

experimental, - - -, analytical.
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By changing the geometry of the second specimen, but using the same elastomer as in specimen 1,
the analytical method was to be validated.

In Fig. 6, experimental and analytical transmissibilities are plotted for specimen 2, with varying
numbers of cells. For the analytical predictions, the same value of shear modulus was used as
determined for specimen 1. Similar to specimen 1, the results for specimen 2 show a discrepancy
between experimental and analytical results for stop band depth in the 4 cell case. However, the
predictions for the 3, 2, and 1 cell cases are nearly colinear with experimental results over the
entire frequency range.

In Figs. 5 and 6, a transmissibility noise floor of 1.4� 10�4 is shown. The noise floor is
calculated using the relation

NF ¼
ðaminÞtop

ðamaxÞbot

¼
ares

ðamaxÞbot

; ð24Þ

where amin and amax are the accelerations of the specimen top and bottom, respectively,
and ares is the accelerometer resolution, quoted at 0.005 g. The maximum experi-
mental acceleration of the specimen base was measured to be 36 g at 1.5 kHz. The minimum
measured transmissibility for the 3 and 4 cell cases may have been obscured by the presence of a
noise floor.

The results in Figs. 5 and 6 show that the analytical model can accurately predict the locations
of the beginning stop band frequencies, assuming that the correct material properties are known.
The experimental end frequencies are not well defined and, as a result, the accuracy of the end
frequency prediction is difficult to assess. The model accurately predicts stop band depths for both
1 cell cases, as well as the 3 and 2 cell cases for specimen 2. The minimum measured stop band
depth for both the 3 and 4 celled cases is a transmissibility of around 1� 10�4, or nearly
coincident with the noise floor. Although the minimum measured transmissibility may have been
affected by the noise floor, this attenuation factor of 10,000 would be sufficient for most vibration
control applications.

ARTICLE IN PRESS

1 Cell 

2 Cells 

3 Cells 

4 Cells 

Noise Floor

1 Cell 

2 Cells 

3 Cells 

4 Cells 

Noise Floor
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

10 100 1000 10000 10 100 1000 10000

Frequency (Hz)(b) Frequency (Hz)(a)

Fig. 7. Comparison of experimental transmissibilities for varying number of cells for (a) specimen 1, (b) specimen 2.
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In Fig. 7, experimental transmissibilities are compared for varying number of layers
for both specimens 1 and 2. Comparing the stop band depths of both the 1 and 2 cell
cases, a full order of magnitude of reduction is gained with an increase of 1 to 2 cells for both
specimens. Similarly, increasing from 2 to 3 cells reduces the transmissibility by an additional
order of magnitude for both specimens. The effect of increasing the number of cells from 3 to 4,
however, is not certain because of the noise floor location. Although the change in stop band
depth cannot be reliably measured when going from 3 to 4 cells, the transmissibility roll-off rate
following the beginning of the stop band is significantly increased. Therefore, a practical design
could limit the minimum number of cells to three or four to ensure a pronounced stop band
attenuation effect.

The effect of increased elastomer damping was also investigated. An additional layered
specimen 3 was constructed that had the same geometry as specimen 1. An elastomer with
approximately the same shear modulus as that used in specimen 1, but with a significantly higher
loss factor, was desired. An elastomer having a modulus nearly identical to to that elastomer 1 at
low frequencies was thus selected. Upon tuning the modulus to align the experimental and
analytical results, however, it was found to be 400% higher than the low-frequency
value. Nevertheless, a transmissibility comparison between specimens 1 and 3 is made
in Fig. 8. The loss factor of elastomer 3 was approximately 0.15. The difference between
the higher and lower damping is most noticeable when comparing the first resonant
peaks of specimens 1 and 3. The first peak of specimen 1 is about a factor of 10 higher
than that of specimen 3. Both specimen transmissibilities, however, reach an approximately
equal minimum value between 1� 10�3 and 1� 10�4: Although the minimum measured
transmissibilities may coincide with the noise floor, only measurements within a relatively
small frequency range would have been obscured within the stop bands. Also, the transmissibility
roll-off does not change appreciably with higher damping. Therefore, the basic stop band
attenuation characteristics do not appear to be significantly affected by the addition of modest
damping.
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Fig. 8. Experimental and analytical 4-celled transmissibilities of (a) specimen 1, (b) specimen 3: —, experimental, - - -,

analytical.
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4. Conclusions

A Ritz approximation method was developed to model the axisymmetric dynamic behavior of
layered isolators. A single cell was modelled in a fixed-free condition, the first two modes of which
are subsequently used to provide estimates for the beginning and end stop band frequencies. To
accurately predict the first two natural frequencies of a cell to within 5% error, a certain minimum
power of the variables, ‘r’ and ‘z’, was required for the both the radial and axial directions. For the
radial direction, the powers of ‘r’ and ‘z’ were two and three, respectively. For the axial direction,
they were one and four, respectively.

An n-celled isolator model was developed using the Ritz approximation method combined
with a modal synthesis method. The natural frequencies were found to agree with 2-D
axisymmetric finite element predictions. The model enabled the prediction the nth and ðn þ 1Þth
isolator modes, which correspond to the stop band beginning and end frequencies.

The isolator model was validated with experiments. Experimental and analytical transmissi-
bilities were compared for two specimens with the same elastomer, but different shape factors.
The elastomer properties used for analytical predictions were determined by matching analytical
and experimental transmissibilities of the first specimen. The properties were then used to predict
the behavior of the second specimen. In both cases, the transmissibilities before the start of the
stop band show close agreement. For the four and three cell cases, analytical transmissibilities lie
below the experimental results, although the experimental noise floor may affect these results. A
minimum experimental transmissibility of about 1� 10�4 was observed for these three and four
cell cases.

Experimental and analytical transmissibilities were also compared for two specimens fabricated
with two different low modulus elastomers, one highly damped, and one lowly damped. The
experimental results show that stop band effectiveness is not appreciably affected by addition of
modest damping.
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